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Fig. 1. A series of snapshots 
in the development of 
the Richtmyer-Meshkov 
instability as simulated by 
DSMC. White indicates the 
heavy fluid, black indicates 
the light fluid, and the red 
line indicates the position and 
profile of the shock front.

In recent years, there has been increasing interest in the 
simulation of fluid flows via atomistic methods rather 
than the more traditional continuum techniques based 

on the Navier-Stokes equations. Atomistic methods include 
molecular dynamics (MD), in which Newton’s equations of 
motion for a large number of interacting particles are solved 
numerically, and direct simulation Monte-Carlo (DSMC), a 
related technique in which explicit interparticle forces are 
replaced by stochastically simulated collisions [1]. Examples 
of such atomistic fluid dynamics simulations include the 
simulation of Rayleigh-Benard convection by MD [2,3] and 
the simulation of the Rayleigh-Taylor instability by MD [4] 
and by DSMC [5].

In this highlight, results are presented from some preliminary 
simulations of the Richtmyer-Meshkov instability (RMI) 
using DSMC [6]. The RMI occurs when a shock front 
passes through the interface between two fluids of differing 
densities. Any roughness or disturbances initially present 
on the interface before the passage of the shock grow 
in magnitude, and the two fluids subsequently mix in a 
characteristic fashion. The RMI is not a true classical 
instability, since modes on the interface do not experience an 
initially exponential growth. However, RMI has many traits 
in common with certain classical instabilities, particularly 
the Rayleigh-Taylor instability.

The simulations for which results are presented here were 
done using a one-processor 2D DSMC code, and each 
simulation required several days on a single workstation. A 
shock was induced in the fluid by a piston at one end of the 
domain. The resulting shock front passed through the denser 
fluid and crossed the interface into the lighter fluid. In order 
for turbulent mixing to occur in the RMI, the initial shape 

of the interface must possess perturbations, and in these 
simulations the shape of the interface was initially set to be a 
sine curve of wavelength λ and amplitude a(0).

Figure 1 shows a sequence of snapshots from the evolution of 
the RMI from a DSMC simulation spanning approximately  
7μm in length by 1μm in height. The number of particles 
present varied over the course of the simulation from 
approximately 15 to 39 million. The density of the light fluid 
was  
ρl = 0.41 g/cm3, and that of the heavy fluid was  
ρh = 10 ρl = 4.1 g/cm3, for an Atwood number of:
 

The piston velocity was 280 m/s, which created a shock front 
that moved through the heavy fluid at a velocity of 420 m/s. 
The initial perturbation amplitude-to-wavelength ratio was 
relatively large, a(0)/ λ = 0.16. In order for the interface to 
avoid diffusion and remain sharp, all particles in front of the 
shock were frozen in position relative to one another. This is 
equivalent to a temperature of 0 in front of the shock. After 
passage of the shock, particles were allowed to move freely.

Note the development of the characteristic “mushroom caps” 
in the mixing zone in Fig. 1, as well as the shear-induced 
curl-up at the fringes of each structure. This behavior is 
typical of several fluid instabilities, including the RMI, 
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Rayleigh-Taylor instability, and Kelvin-Helmholtz instability. 
Also notice that the two structures present do not remain 
identical, as they would for a periodically perturbed interface 
in a typical continuum simulation. Atomistic methods, 
via the thermal fluctuations they contain and that are 
physically present at the microscopic scale, provide their own 
mechanisms for symmetry breaking.

In addition to considering the overall development of the 
RMI, it is interesting to examine the initial growth of the 
interface width for times shortly after the passage of the 
shock front. Using only hydrodynamic considerations, 
Richtmyer [7] has shown that for small a(0), the velocity at 
which the amplitude of interfacial perturbations grows is 
given for small times by:

 
Here a(t) is the amplitude as a function of time, k = 2π / λ is 
the wavenumber of the perturbation, and Δn is the change 
in velocity experienced by the interface as a result of the 
passage of the shock front. Figure 2 shows a comparison 
between Richtmyer’s prediction and results from a DSMC 
simulation. This simulation was identical to the one 
described above, except that the amplitude-to-wavelength 
ratio was smaller, a(0)/ λ = 0.02.

Note that for small times t, the slope of the a(t) curve from 
the simulation agrees well with Richtmyer’s prediction. This 
serves as a partial validation of linearized hydrodynamics on 
the small scales described by these simulations, and fits in 
well with a previous study performed for the initial growth of 
the Rayleigh-Taylor instability [8].

For animations and other details of the two simulations 
described above, see http://www.lanl.gov/orgs/t/t17/staff/jlb/
BarberResearch.html.

Fig. 2. The amplitude a(t) 
of an initially sinusoidal 
perturbation on the interface 
of the Richtmyer-Meshkov 
instability as a function of 
time, as predicted for small 
t by Richtmyer, and as 
simulated by DSMC.
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